From sustainable feedstocks to microbial foods (2024)

References

  1. Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Microb. Biotechnol. 15, 18–25 (2022).

    Article PubMed Google Scholar

  2. Jahn, L. J., Rekdal, V. M. & Sommer, M. O. A. Microbial foods for improving human and planetary health. Cell 186, 469–478 (2023).

    Article CAS PubMed Google Scholar

  3. Campbellplatt, G. Fermented foods—a world perspective. Food Res. Int. 27, 253–257 (1994).

    Article Google Scholar

  4. Bryant, K. L., Hansen, C. & Hecht, E. E. Fermentation technology as a driver of human brain expansion. Commun. Biol. 6, 1190 (2023).

    Article PubMed PubMed Central Google Scholar

  5. Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  6. Ugalde, U. & Castrillo, J. in Applied Mycology and Biotechnology Vol. 2 (eds Khachatourians, G. G. & Arora, D. K.) 123–149 (Elsevier, 2002).

  7. Goldberg, I. Single Cell Protein Vol. 1 (Springer Science and Business Media, 2013).

  8. Jenkins, G. in Resources and Applications of Biotechnology: The New Wave Vol. 1 (ed. Greenshields, R.) 141–149 (Palgrave Macmillan, 1988).

  9. Ritala, A., Hakkinen, S. T., Toivari, M. & Wiebe, M. G. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front. Microbiol. 8, 2009 (2017).

    Article PubMed PubMed Central Google Scholar

  10. Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).

    Article CAS PubMed Google Scholar

  11. Riesenberg, D. & Guthke, R. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biotechnol. 51, 422–430 (1999).

    Article CAS PubMed Google Scholar

  12. Yunus, F.-U.-N., Nadeem, M. & Rashid, F. Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 121, 553–557 (2015).

    Article CAS Google Scholar

  13. Antunes, F. A. F. et al. Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech 9, 230 (2019).

    Article PubMed PubMed Central Google Scholar

  14. Kumar, A., Anushree, Kumar, J. & Bhaskar, T. Utilization of lignin: a sustainable and eco-friendly approach. J. Energy Inst. 93, 235–271 (2020).

    Article CAS Google Scholar

  15. Rajak, R. C., Jacob, S. & Kim, B. S. A holistic zero waste biorefinery approach for macroalgal biomass utilization: a review. Sci. Total Environ. 716, 137067 (2020).

    Article CAS PubMed Google Scholar

  16. Singh, A. & Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88, 3548–3555 (2011).

    Article CAS Google Scholar

  17. Sarwer, A. et al. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797–2851 (2022).

    Article CAS Google Scholar

  18. Andayani, S. N., Lioe, H. N., Wijaya, C. H. & Ogawa, M. Umami fractions obtained from water-soluble extracts of red oncom and black oncom-Indonesian fermented soybean and peanut products. J. Food Sci. 85, 657–665 (2020).

    Article CAS PubMed Google Scholar

  19. Janssen, M., Wijffels, R. H. & Barbosa, M. J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 75, 102705 (2022).

    Article CAS PubMed Google Scholar

  20. Benefits of seaweed. Nat. Plants 9, 1 (2023).

  21. Nyyssola, A., Suhonen, A., Ritala, A. & Oksman-Caldentey, K. M. The role of single cell protein in cellular agriculture. Curr. Opin. Biotechnol. 75, 102686 (2022).

    Article CAS PubMed Google Scholar

  22. Wang, S., An, Z. & Wang, Z.-W. in Advances in Bioenergy Vol. 5 (eds Li, Y. & Khanal, S. K.) 169–247 (Elsevier, 2020).

  23. Meyer, O. Using carbon monoxide to produce single-cell protein. BioScience 30, 405–407 (1980).

    Article CAS Google Scholar

  24. Durre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).

    Article PubMed Google Scholar

  25. Siebert, D., Eikmanns, B. J. & Blombach, B. Exploiting aerobic carboxydotrophic bacteria for industrial biotechnology. Adv. Biochem. Eng. Biotechnol. 180, 1–32 (2022).

    CAS PubMed Google Scholar

  26. Smejkalova, H., Erb, T. J. & Fuchs, G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE 5, e13001 (2010).

    Article PubMed PubMed Central Google Scholar

  27. Calvey, C. H. et al. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab. Eng. 75, 78–90 (2023).

    Article CAS PubMed Google Scholar

  28. Tong, S. et al. From formic acid to single-cell protein: genome-scale revealing the metabolic network of Paracoccus communis MA5. Bioresour. Bioprocess. 9, 55 (2022).

    Article Google Scholar

  29. Kang, Y., Kim, T., Jung, K. Y. & Park, K. T. Recent progress in electrocatalytic CO2 reduction to pure formic acid using a solid-state electrolyte device. Catalysts 13, 955 (2023).

    Article CAS Google Scholar

  30. Matassa, S., Batstone, D. J., Hulsen, T., Schnoor, J. & Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ. Sci. Technol. 49, 5247–5254 (2015).

    Article CAS PubMed Google Scholar

  31. Hu, X. et al. Microbial protein out of thin air: fixation of nitrogen gas by an autotrophic hydrogen-oxidizing bacterial enrichment. Environ. Sci. Technol. 54, 3609–3617 (2020).

    Article CAS PubMed Google Scholar

  32. Xiang, S. et al. New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J. Microbiol. Biotechnol. 36, 144 (2020).

    Article CAS PubMed Google Scholar

  33. Lee, B. et al. Pathways to a green ammonia future. ACS Energy Lett. 7, 3032–3038 (2022).

    Article CAS Google Scholar

  34. Ye, D. & Tsang, S. C. E. Prospects and challenges of green ammonia synthesis. Nat. Synth. 2, 612–623 (2023).

    Article Google Scholar

  35. Molfetta, M. et al. Protein sources alternative to meat: state of the art and involvement of fermentation. Foods 11, 2065 (2022).

  36. Liu, Y. et al. Food synthetic biology-driven protein supply transition: from animal-derived production to microbial fermentation. Chin. J. Chem. Eng. 30, 29–36 (2021).

    Article CAS Google Scholar

  37. Ghazani, S. M. & Marangoni, A. G. Microbial lipids for foods. Trends Food Sci. Technol. 119, 593–607 (2022).

    Article CAS Google Scholar

  38. Kim, S. W. et al. Meeting global feed protein demand: challenge, opportunity, and strategy. Annu. Rev. Anim. Biosci. 7, 221–243 (2019).

    Article CAS PubMed Google Scholar

  39. Castro-Muñoz, R., Zamidi Ahmad, M., Malankowska, M. & Coronas, J. A new relevant membrane application: CO2 direct air capture (DAC). Chem. Eng. J. 446, 137047 (2022).

    Article Google Scholar

  40. Ghosh, A. & Kiran, B. Carbon concentration in algae: reducing CO2 from exhaust gas. Trends Biotechnol. 35, 806–808 (2017).

    Article CAS PubMed Google Scholar

  41. Rasul, S., Pugnant, A., Xiang, H., Fontmorin, J.-M. & Yu, E. H. Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. J. CO2 Util. 32, 1–10 (2019).

    Article CAS Google Scholar

  42. Lachore, W. L., Andoshe, D. M., Mekonnen, M. A. & Hone, F. G. Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review. J. Solid State Electrochem. 26, 295–311 (2022).

    Article CAS Google Scholar

  43. Whittaker, J. A., Johnson, R. I., Finnigan, T. J. A., Avery, S. V. & Dyer, P. S. in Grand Challenges in Fungal Biotechnology Vol. 1 (ed. Nevalainen, H.) 59–79 (Springer, 2020).

  44. Ling, C. et al. Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation. Biotechnol. Bioeng. 116, 805–815 (2019).

    Article CAS PubMed Google Scholar

  45. Lee, J. A. et al. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol. 41, 798–816 (2023).

    Article CAS PubMed Google Scholar

  46. Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).

    Article CAS PubMed Google Scholar

  47. Matelbs, R. I. & Tannenbaum, S. E. Single-cell protein. Econ. Bot. 22, 42–50 (1968).

    Article Google Scholar

  48. Lee, H. S., Park, H. J. & Kim, M. K. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet. Nutr. Res. Pract. 2, 204–210 (2008).

    Article CAS PubMed PubMed Central Google Scholar

  49. Karimi, S. et al. Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: protein, lipid, and mineral composition. Fermentation 5, 99 (2019).

    Article CAS Google Scholar

  50. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article CAS PubMed Google Scholar

Download references

From sustainable feedstocks to microbial foods (2024)
Top Articles
Latest Posts
Article information

Author: Manual Maggio

Last Updated:

Views: 5912

Rating: 4.9 / 5 (69 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.